Spvryan’s International Journal of Engineering Sciences & Technology (SEST)

ISSN : 2394-0905

A Novel Approach for XML Query Optimization

Shilpa P. Mene(PG student), Prof. S.M.Kamalapur KKWIEER Nasik, Prof. N.L. Bhale MCOERC Nasik

Abstract

Extensible Markup Language (XML) has gained importance
in web and middleware development from the end of last mil-
lennium. It is write-it-yourself markup language that one
uses to describe data and it allows for more precise structur-
ing of that data than is possible with more rigid markup lan-
guage. XML is the product of the world wide web consortium,
W3C. As XML is involved in the access of information, the
intermediate processing on XML should not be the bottleneck
to deteriorate the performance of the data access. The choice
data structure to represent the XML document is a tree. Twig
pattern matching on XML trees is core operation for optimal
evaluation of XML queries. But optimality of any pattern
matching algorithm depends on labeling scheme applied to
the logical tree of XML document on which twig pattern is
to be matched. Most of existing labeling schemes computes
the labels by traversing the logical tree of XML document in
some order which is considered for prediction of relationship
such as P-C and A-D between the elements. Proposed labeling
scheme s designed to reduce the space requirement without
compromising the speed of execution.

Key terms
Encoding, Labeling, Pattern Matching, Semi-structured
Data, Twig, XPath

1. Introduction

XML query optimization is need of the time as the use
of XML is inevitable for majority of web accesses, e-
commerce, cloud computing and information retrieval in
distributed environment that is Service Oriented Archi-
tectures. The various functional units within an enter-
prize connected through multiple media, and each com-
prising of several computing systems are linked together.
As Business Logic (Middleware) is playing the crucial
role in information exchange and XML is inseparable
part of communication contents, it is worth to under-
stand, study and apply the optimizing solutions to cope
up the latency issue in distributed environment. There
were the attempts of researchers to address various as-
pects to improve query response time. Only fast access
solely con not qualify for exactness of the intent of the
query. So there is a need to design the solution so that
time efficiency and relevance should go hand in hand.
The proposed work is an attempt to use an appropriate
intermixes of optimal labeling and twig pattern match-
ing algorithm and further enhancing it with the usage of
indexing for speedy search. Majority of labeling schemes
are rigid, that is not flexible to update in XML document,
if update is required whole process has to be repeated
with previous efforts wasted. Many labeling schemes

need large space that may grow dynamically leading to

increased disk accesses and hence defeating the purpose
of minimizing response time. Consequently the pattern
matching algorithm is affected with the drawbacks of
chosen labeling scheme. Varying size of data in ques-
tion can lead to varying performances due to matching
cross. The organization of paper starts with literature
survey and system requirement specification followed by
mathematical foundation then the adequate set of results
on different data sets are provided to support the claim

of optimization.

2. Related Work

The eXtensible Markup Language (XML) is the
universal format for structured documents and data on
the Web. Main Advantages of XML are it is human and
machine readable, it is more flexible than HTML as well
as not so complicated as SGML and unlike relational
table, XML can describe tree and graph structural data.
An XML document is commonly modeled as a rooted,

ordered tree, as given in an example

<bookyear="1967">
<title>The politics of experience</ftitle>
<authors>
<firstname>=Ronald<firstname>
<Iastna[’ne:=La|'ng<,f|astname:>

</author=
</boaok>
book
_/-\"ﬁ'/—*"“\\,_a
’-"'_)) // -
- L
@ Gl D
“year” is an / .
attribute A ~
“1967" “Database Concepts” C_NrStname > lastname)
"Raghu” “Ramkrishnan”

Figure 1: An XML document as rooted ordered tree

The Major standards for querying XML data are
Issue 1 Volume 2

Paper : 25
Page 1 of 8

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)
ISSN : 2394-0905

XPath and XQuery, which includes two parts, namely
value match (keyword-based search) and structure match
(complex queries specified in a tree-like structure). A
keyword search is similar to content retrieval in infor-
mation retrieval technology. However, supporting struc-
tural query basically means that we need an effective
way to match (i) the query node tag and (ii) the struc-
tural relationships between query nodes. There are three
main types of relationships, namely, Parent-Child (P-C),
Ancestor-Descendant (ANCESTOR-DESCENDANT) or
siblings. Hence XML Twig pattern match is core op-
eration in XQuery and XPath. An XML twig pat-
tern is a small tree whose nodes are tags, attributes or
text values; and edges are either parent-child (P-C) or
ancestor-descendant (ANCESTOR-DESCENDANT) re-
lationships.

Consider the following twig pattern and document

An XML tree:

Query solutions:

(s1, t1, 1)
(s2, 12, 1)
(s1, t2, 1)

The approach involves two steps, namely labeling and
computing. Labeling scheme assigns each element in the
XML document tree an integer label to capture the struc-
tural information of documents. Computing involves use
labels to answer the twig pattern without traversing the

original document.

3. LABELING SCHEME

A labeling scheme for a document tree D is a decentral-
ized structural summary of a specific set of tree relations
in D. Each node in D is assigned a typically unique node
label, so that any of these relations between the nodes
in D can be inferred from their labels, without access to
remote parts of D or to a global representation of the en-
tire document tree. Several labeling schemes (also known
as numbering scheme or encoding scheme) have been in-
troduced, based on the following observation. Edges in
XML data trees represent structural relationships be-
tween data nodes. To answer XML queries, structural
relationships, or more specifically reachability between
any pair of nodes in XML data trees is compared.

These labeling schemes can be classified, based on the

fundamental principles underlying the different labeling
schemes. Classification highlights each technique’s main
characteristics, advantages and drawbacks. Most node
labeling schemes are based on the node-labeled data
model. (2)shows an example XML document, which is
used throughout. In a node-labeled data tree, there are
two main objects, namely, nodes and edges. Nodes can
be further classified into (1) Element Node (2) Attribute
Node and (3) Value Node. Element Nodes correspond to
the tags in the XML document.

Figure 2: An Example XML tree

There has been a great diversity of labeling schemes,
since the emergence of the XML. Generally, they can be
broadly classified into three main categories, viz Subtree
labeling, Prefix-based labeling and Multiplicative label-

ing as shown in Figure

Labeling Schemes

— VT

Sub tree Pre-fix based Multiplicative
Labeling Labeling Labeling

Interval
Encoding

Region
Encoding

Figure 3: Classification of labeling schemes

4. SUBTREE LABELING

This category is the simplest, where the label of a given
document node v in D encodes the position and the ex-
tent of the subtree Dv of D that is rooted in v, by means
of offsets in the sequence of nodes resulting from travers-
ing (at least a part of) the document tree in a specific
order. While the exact representation of the subtrees
varies accordingly, for the given nodes v, w in D, their

ANCESTOR-DESCENDANT and P-C relationships are

Issue 1 Volume 2

Paper : 25
Page 2 of 8

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)
ISSN : 2394-0905

always determined by testing whether Dv contains Dw.
The label of a node is usually concise in this group of
labeling scheme. Performance degrades in an update in-
tensive environment, as the labels usually need to be
regenerated. The subtree labeling can be further broken
down into two subclasses: interval encoding and region

encoding.

4.1.

This is the earliest labeling scheme proposed, where the

Interval Encoding

initial objective was to accelerate routing in communica-
tion networks. It has then inspired research in labeling
semistructured and structured data. Tree Traversal Or-
der: introduced the first XML numbering scheme based
on tree traversal order. In this scheme, each node is la-
beled with a pair of unique integers consisting of preorder
and postorder traversal sequences, as shown in (4). His
proposition is: for two given nodes v and w of a tree D,
v is an ancestor of w, if and only if v occurs before w in
the preorder traversal of D and after w in the postorder
traversal. By using this approach, we can determine the
ANCESTOR-DESCENDANT relationship easily. Nev-
ertheless, the P-C relationship could not be determined
directly. As such, this method is inefficient for a dy-
namic XML document, because whenever a new node is
inserted or deleted, the preorder and postorder values

need to be recomputed.

Figure 4: XML tree with Pre-order Label

Extended Preorder Traversal: IS a numbering scheme
integrated with indexing mechanisms, which enables effi-
cient search by value and structure. It is designed based
on the notion of extended preorder traversal, to accom-
modate future insertion gracefully. Here, each node in
the XML tree is labeled with a pair of numbers jor-
der, size;, as shown in (5). To enable future insertions
gracefully, size(v) can be an arbitrary integer larger than

the total number of current descendant of v. However,

a global reordering is necessary when all the reserved
spaces have been consumed. Moreover, it is not clear
how one can assign a large enough value for "size”, based

on the three propositions.

1221

Figure 5: XML tree with Extended Preorder Label

4.2. Region Encoding

The region encoding (also known as range encoding)
schemes are originally designed for structured text
databases. A node in the document tree corresponds
to a substring of the entire string of the XML document.
Such substrings can be naturally identified by region co-
ordinate, which is interpreted as a pair of integers (start
position, end position) of the substring counting from the
beginning of the XML document using inverted lists to
process containment query of XML data. Containment
queries are a class of queries based on the relationships
among elements, attributes and their contents. To sup-
port processing of semi structured XML document, the
inverted index is extended to text index (T-index) and
element index (E-index). T-index is similar to the tra-
ditional index in information retrieval systems, while E-
index maps element to inverted lists. Each inverted list
records the occurrences of a word or an element known
as term. FEach occurrence is indexed by its document
number, position and depth within the document, which
is denoted as (docno, begin: end, level) for E-index and
(docno, wordno, level) for T-index. The position (begin,
end, wordno) are generated by counting the word num-
bers in the XML document, based on depth-first traver-
sal.

5. PREFIX BASED LABELING

In the prefix labeling scheme (also known as path-based
labeling scheme), the label of a given node v encodes

Issue 1 Volume 2

Paper : 25
Page 3 of 8

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)
ISSN : 2394-0905

An XML tree: Data lists:
(112,1), (4,11,2)
(2,32), (56,3)

(1,12,1) s

(411,2) t

(7,10,3) f
(8,9,4)

Figure 6: XML tree with Region Encoding

the nodes on the path from the document root down
to v, as a sequence to uniquely denote an ancestor of
v on that path. Thus, given a node v and its ancestor
u, their relationship could be determined precisely, i.e.
u is an ancestor of v if label(u) is a prefix of label(v).
However, this labeling scheme has some limitations in
terms of space consumption and efficiency. The size of
the label grows with the length of the encoded path. In
the worst case, its size is O(n). Hence, the path encoding
takes up more space as compared to subtree encodings,
This further affects the

efficiency during the query evaluation process, as more

whose label size is O(log n).
time is needed to process the longer encoded path.

Tree Location Address

5.1.

Kimber [4] proposed an approach using "tree location
address” to locate a node in a tree by selecting an an-
cestor node at each level of the tree. According to this
approach, each identifier of an ancestor node is a pre-
fix of its descendant. A node id (nid) is the concatena-
tion of the nid through the path from the root to the
respective node. Using this method requires variable
space to store the identifiers. Thus, the time to de-
termine the ANCESTOR-DESCENDANT relationship
is not constant, as it depends on the length of identi-
fiers. As a result, this method may not be practical for

large databases.

5.2. Simple Prefix

Cohen et al. [5] proposed a simple prefix labeling scheme,
wherein each label inherits its parent’s label as prefix.
The root is labeled with an empty string (” ”). The first
child of the root is labeled with ”0”, the second child
with 710”7, followed by the third and fourth with ”110”
and 711107 respectively. For any node L(v) denoting
the label of v, the first child of v is labeled with L(v)”0”,

Figure 7: XML tree with Tree Location Address Label

the second child of v is labeled with L(v)”10” and the ith
child with L(v)”(1..1)i-10”. Referring to (8), for example,
the node chapter is an ancestor of caption, for 701107 is
a prefix of 7011010100”. This labeling scheme does not
need to be regenerated for any arbitrarily heavy update
such as deletion or addition of nodes or subtree to each
right side of a subtree. The limitation of this technique

is that the size of simple prefix is often too huge.

wn

Figure 8: XML tree with Simple prefix Label

5.3. Dewey ID

Dewey ID [6] is based on the Dewey Decimal Classifi-
cation System , which is widely used by librarians. The
Dewey ID labeling is very similar to tree location address
except that dot separators are present in Dewey ID label-
ing to differentiate each label inherited from each level
of their ancestors. Using this labeling scheme, structural
relationships between elements can be determined effi-
ciently. It is said that element u is an ancestor of element
To test

whether any two nodes is in P-C relationship, the number

v if and only if label(u) is a prefix of label(v).

of integer in label(u) is one more than that of label(v).
In Dewey ID, the size of the node label at each level is

exactly one byte and thus the maximum label size (in

Issue 1 Volume 2

Paper : 25
Page 4 of 8

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)
ISSN : 2394-0905

bytes) depends only on the maximum depth of the tree.
As a matter of fact, Dewey IDs may become quite long,
especially in trees with large depth and fan-out values,
due to the large size of labels and delimiters (dot sepa-
rators), which incurs high storage overhead. Therefore,
serious effort is needed to develop a more practical solu-
tion for them. Nevertheless, for fan-out degrees greater
than 10, larger alphabets such as Unicode Character Set
could be used to label each node instead.

Figure 9: XML tree with Dewey labels

5.4. ORDPATH

It is similar conceptually to the Dewey ID. ORDPATH
encodes the P-C relationship by extending the parent’s
ORDPATH label with a component for the child. The
main difference between ORDPATH and Dewey ID is
that even numbers are reserved for further node inser-
tions in ORDPATH. An example of tree labeling using
ORDPATH is depicted in Figure 2.2.4. During the initial
labeling, ORDPATH assigns only positive and odd inte-
gers. Even and negative integer values are reserved for
later insertions. For instance, if the newly inserted node
is to be added to the right of all the existing children, its
label is generated by adding +2 to the last ordinal of the
last child. If the newly inserted node is to be added to
the left of all the existing children, its label is generated
by adding 72 to the last ordinal of the first child. How-
ever, this approach is not suitable for deep trees. As can
be seen in Figure 8, the size of the ORDPATH label may
become quite huge, especially in trees with large depth
and fan-out values. To cope with such trees, ORDPATH
uses labels that do not reflect ancestry and thereby loses

some of its expressivity.

1331

Figure 10: XML tree with ORDPATH

6. MULTIPLICATIVE LABELING

This category of labeling scheme uses atomic numbers to
identify nodes. Relationships between nodes can be com-
puted, based on some arithmetic properties of the node
labels. The idea is to find a mapping from a given irreg-
ularly structured document tree D to a regular tree D’,
such that some of the arithmetic properties in D’ carry
over to D. The main limitation is that the computation
of multiplicative labeling is very expensive. Hence, it is
unsuitable for labeling a large-scale XML document.

6.1. Unique Identifier (UID)

It enumerates the node using K-ary tree. Few calcu-
lations are needed to determine parent of a node but
label computation is computationally expensive and re-
cursive lookup is necessary to determine A-D P-C rela-
tionships.Here, each internal node is supposed to have
the same number of fan-out k. Thus, virtual nodes are
created to balance the number of fan- outs. Starting from
each level, each node is assigned a label starting with in-
teger 1 from top to bottom and from left to right. The
virtual nodes created are shown only until level 3, due to
space constraint. As opposed to other labeling schemes,
which can only com- pare two already known identifiers
in order to determine the parent-child relationship, the
UID technique has an interesting property whereby the
parent node can be determined, based on the identifier
of the child node.

6.2. rUnique Identifier (rUid)

It is an extention to UID and recursive by nature. It
clusters the node into connected subsgrph. It supports
update/ inserts but as UID the label computation caused

is an overhead and requires recursive lookup.

Issue 1 Volume 2

Paper : 25
Page 5 of 8

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)
ISSN : 2394-0905

6.3. Prime Number Based

In this scheme prime numbers are used for labeling by
using top down and bottomup approach. With this, the
root will be labeled with the first prime number 1. Each
non-leaf node will be given a unique prime number. The
label of each node is the product of its parent nodes’
label (parent-label) and its own assigned number (self-
label).It is very efficient on update but the label genera-
tion is computationally expensive This approach is good
for dynamic updates. When a new node is inserted, an
unassigned self-label prime number is allocated. Thus,
no re-labeling is required. However, one disadvantage
of the prime number labeling scheme is that each prime
number can only be used once. Thus, the size of the la-
bel increases as it reaches the bottom of the tree. The
size storage of the label has direct impact on the per-
formance of XML query processing. It is, therefore, not
suitable for a tree with many levels. The authors also
suggest some optimization techniques such as (1) Assign
small prime number to the root and level right after the
root, so that the value inherited will be smallest possible
(2) Use number 2 and its sequence. the only even prime
number to label the self-labels of the leaf nodes and the
odd numbers for the non-leaf nodes (3) Combine those
paths, which occur multiple times, to reduce redundancy

and further decrease the size of the labels.

Labeling schemes are the fundamental building block
for many different structural joins algorithms and a valu-
able complement to structural indexes. Choosing a cor-
rect labeling scheme is crucial. There are several fac-
tors to be considered, when choosing a suitable labeling

scheme. These are listed below:

1. Storage: How much storage space is available? Is
there enough space to store each node label on disk

or in memory?

2. Nature of the data: How large is the XML docu-

ment? How frequently does it change?

3. Query type: Is it a structural query or a full-text
query that needs to be supported?

4. Efficiency: What is the construction cost of each
labeling technique? How fast is the manipulation of

node labels during query evaluation?

7. Proposed method

The proposed method focuses on the development of an
optimal labeling scheme to enhance the process of XML
query optimization. Further the algorithm will be de-
vised to work in tandem with the labeling scheme. The
trade off will be used to exploit the benefits of label-
ing scheme and algorithm to satisfy the objective. The
chosen duo of labeling scheme and the algorithm must
complement each other. When tested on varying sizes of
XML data sets and possible XML queries the claimed en-
hancement must be observed. Thus the labeling scheme
and the algorithm work together to help optimize the
XML query. XMark benchmark is used to generate syn-
Different XML docu-

ments can be given as an input to system for which with

thetic data set for experiments.

the help of logical XML tree corresponding binary trees
are obtained for applying labeling scheme. On labeled bi-
nary tree pattern matching algorithm is applied to find
out match for twig query given. While doing this com-
putation, performance of system is measured in terms
of time and space required for computation which is to
be used to compare the performance of proposed scheme
with other algorithms used for same computations.

Possible Research outcome:
e A novel technique to optimize XML query execution

e Enhancement in the performance of XML data ac-

cess

e Quantization of the performance of the proposed

technique

e Comparative assessment of various existing node la-
beling and search techniques with proposed tech-

nique

7.0.1. Proposed algorithm for Labeling

1. Input: Logical XML tree mapped into equivalent

binary tree
2. Output: Labeled logical XML tree

3. Start from root node and assign '1’ as label (Lp) to
it.
4. Start pre-order traversal from root

5. if(child is left child)
assign label as Le=2(Lp) and mark as visited

Issue 1 Volume 2

Paper : 25
Page 6 of 8

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)

else

assign label as Le=2(Lp)+1 and mark as visited
6. Set Lp=Lc

7. Repeat step 5 and 6 until all nodes are marked as

visited.

8. Results and Discussion

As many of the XML documents specially with respect to
business data exchange not undergo frequent and major
updates , the proposed scheme can give pattern matching
result in optimal way in terms of time and space as label
computation time is get reduced as range of start and
end value of label can be passed for faster computation.
If we compare it with ORDPATH labeling in which label
composed of combination of document Id, prefix order:
postfix order and Level values which requires twice com-
putations for calculating preorder, postoerder and level
value of every node. In comparison with Dewey labeling

the space requirement is very less in proposed labeling.

9. Conclusion

Motivated by the need to support XML data updates
in dynamic XML environments, a new XML labeling
scheme is proposed. The aim of all versions of the la-
beling algorithm is to keep label size and required re-
labeling with inserts and deletes at minimum while pro-
viding several relationships. As the labeling scheme has
wide range of values to be assigned to the labels the insert
and delete operations can be performed without signif-
icant re-computations. The search is optimized due to
numeric notation of the label. Experimental study of
this project compares the performance of the proposed
labeling scheme with Dewey and Extended Dewey label-
ing schemes. The tests are performed with 4 different
cases; labeling the XML data, space requirement, query
performance and update performance. The results of the
performance tests confirmed that 1. The proposed label-
ing scheme is better in terms of space requirement. 2.
The labeling process requires less time for label compu-
tation in comparison with string based labeling. 3. The
twig pattern matching performs better when proposed

labeling scheme is used.

ISSN : 2394-0905

References

[1] J. Lu, T. W. Ling,Z. Bao and C. Wang Extended
XML Tree Pattern Matching: Theories and Algo-
rithms, IEEE TKDE Journal 2011

[2] Haw Su-Cheng and Lee Chien-Sing Node Labelling
Schemes In XML Query Optimization : A Survey
and Trends, IETE technical review — Volume
26—TIssue 2— Mar-Apr 2009

[3] A. Berglund, S. Boag, and D. Chamberlin, XML
Path Language (XPath) 2.0, W3C Recommendation,
http://www.w3.org/TR/ xpath20/, Jan. 2007.

[4] A. Deutsch, M. Fernandez, and D. Suciu. Storing
Semistructured Data with STORED |, In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages
431-442, 1999.

[5] C.-C. Kanne and G. Moerkotte. Efficient Storage of
XML Data In Proc. 16th Int.Conf. on Data Engi-
neering, pages 198-209, 2000.

[6] C. Koch. Efficient Processing of Expressive Node-
Selecting Queries on XML Data inSecondary Storage:
A Tree Automata -based Approac . In Proc. 29th Int.
Conf. on Very Large Data Bases, pages 249-260, 2003.

[7] J. Lu, T. Chen, and T.W. Ling, Efficient Processing
of XML Tuwig Patterns with Parent Child Edges: A
Look-Ahead Approach Proc. 13th ACM Int’l Conf.
Information and Knowledge Management (CIKM),
pp- 533-542, 2004.

[8] S. Al-Khalifa, H.V. Jagadish, J.M. Patel, Y. Wu,
N. Koudas, and D. Srivastava, Structural Joins: A
Primitive for Efficient XML Query Pattern Match-
ing Proc. 18th Int’l Conf. Data Eng. (ICDE), pp.
141152, 2002.

[9] N. Bruno, D. Srivastava, and N. Koudas, Holistic
Twig Joins: Optimal XML Pattern Matching Proc.
ACM SIGMOD, pp. 310321, 2002.

[10] Q. Li, and B. Moon, Indezing and Querying XML
Data for Regular Path Expressions, in Proceedings of
the VLDB, pp. 361-70, 2001.

[11] M. Shalem and Z. Bar-Yossef, The Space Complez-
ity of Processing XML Twig Queries over Indexed
Documents Proc. 24th Int’l Conf. Data Eng. (ICDE),
2008.

Issue 1 Volume 2

Paper : 25
Page 7 of 8

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)

[12] J. Lu, T.W. Ling, C. Chany, and T. Chen, SFrom
Region Encoding to FExtended Dewey: On Efficient
Processing of XML Tuwig Pattern Matching, T Proc.
IntS1 Conf. Very Large Data Bases (VLDB), pp. 193-
204, 2005.

[13] M. Duong, and Y. Zhang, LSDX: A New Label-
ing Scheme for Dynamically Updating XML Data , in
Proceedings of the 16th Australasian Database Con-
ference, pp. 185-93, 2005.

[14] P O’Neil, E. O’Neil, S. Pal, L. Cseri, G. Schaller,
and N. Westbury, ORDPATHS: Insert-Friendly
XML Node Labels , in Proceedings of the ACM SIG-
MOD, pp. 903-8 ,2004.

[15] X. Wu, M.L. Lee, and W. Hsu, A Prime Number
Labeling Scheme for Dynamic Ordered XML Tree , in
Proceedings of the ICDE, pp. 66-78, 2004.

[16] M. Brantuner, S. Helmer, C.-C. Kanne, and G. Mo-
erkotte. Full-fledged AlgebraicXPath Processing in
Natiz In Proc. 21st Int. Conf. on Data Engineering,
pages 705-716, 2005.

ISSN : 2394-0905

Issue 1 Volume 2

Paper : 25
Page 8 of 8

