
Spvryan’s International Journal of Engineering Sciences & Technology (SEST)

ISSN : 2394-0905

Issue 6 Volume 2

Paper : 11

Page 1 of 5

Repository Filter with Semantic Heterogeneity

Reconciliation Using WordNet for Efficient Semantic

Web Service Discovery

Mrs. Tanuja P. Lonhari

Department of Computer Engineering

D. Y. Patil College of Engineering

Pune, India

Mrs. D. A. Phalke

Department of Computer Engineering

D. Y. Patil College of Engineering

Pune, India

Abstract—Popularity of Semantic Web is increasing by the day.

Ontology is a key building block of Semantic Web Applications.

It represents information in a particular domain in a well-

structured manner. It is used to share common information

about the domain amongst entities working in that domain so

that when multiple entities interact with each other, they can do

so in an unambiguous manner. Even though Semantic Web has

been around for a few years, there are very few standard

ontologies available for use. This gives rise to semantic

heterogeneity. The proposed system tries to reduce the semantic

heterogeneity using WordNet from a repository filter mechanism

used to improve performance of Sematic Web Service (SWS)

discovery mechanism.

Index Terms—Semantic heterogeneity reconciliation,

WordNet, Semantic Web Service discovery, repository filtering,

SPARQL.

I. INTRODUCTION

As Semantic Web is gaining popularity, number of

available Semantic Web Services (SWS) is also increasing

rapidly. Automatic discovery of relevant services is the key

feature to improve usability of these services. As the users do

not have any prior knowledge of published services, an

efficient search mechanism is crucial to improve usability of

services. Currently, there are several different approaches

being followed for discovery of SWS. Logical reasoning-

based matching, graph-based matching, hybrid matching are

some of them [2]. All the existing discovery mechanisms for

SWS are fairly computation intensive and do not scale well

when the number of published services grows or complexity of

the domain ontology increases.

Several mechanisms have been suggested to overcome the

scalability issue of the discovery mechanisms. Amongst the

suggested approaches are indexing and caching techniques,

clustering mechanisms, and other preprocessing steps. An

effective preprocessing mechanism is the repository filtering

mechanism based on SPARQL queries [5]. This mechanism

analyses user query and extracts concepts defining various

terms in the service annotation ontology. A SPARQL query is

formed based on these concepts. This query finds out those

service descriptions present in the repository that contain some

or all the concepts mentioned in the user query filtering out all

the rest of descriptions. The service descriptions selected by

the filter are passed as input to the subsequent discovery

mechanism. This filtering mechanism considerably reduces

the search space and hence improves performance of the

discovery mechanism.

In Semantic Web, ontologies present information in a

particular domain in a well-structured manner. It is used to

share common information about the domain amongst entities

working in that domain so that when multiple entities interact

with each other, they can do so in an unambiguous manner

[12]. For example, if the service requester and service provider

refer to same ontology, the provider will exactly know what the

requester is looking for. Most of the matchmaking services

and also the repository filtering approach mentioned earlier

assume that concepts from service description and service

request refer to the same ontology but this rarely happens in an

open environment such as Internet where the Web Services

reside. In such a situation service providers providing similar

services might refer to different ontologies. This results into

semantic heterogeneity. If the service request and service

advertisements are not referring to same ontology, the

discovery or filtering mechanism fails to retrieve a service even

if it is relevant for the request. This reduces recall of the

mechanism considerably. The proposed system uses a

technique based on WordNet to improve recall of the

repository filtering mechanism.

II. RELATED WORK

Web Services essentially follow Service Oriented

Architecture (SOA). In this publish-find-bind architecture the

client of the service invocation has no prior knowledge of the

service description and hence cannot link in pre-compiled

stubs. Service discovery plays the most important role in this

architecture and has been the subject of major research work

going on in the area. Inclusion of semantic annotations to the

service description in Semantic Web Services greatly improves

efficiency of discovery mechanisms and enables automatic

discovery of services.

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)

ISSN : 2394-0905

Issue 6 Volume 2

Paper : 11

Page 2 of 5

There are several different approaches being used for

discovery of SWS. Service annotation ontology allows

semantic services to be described in terms of their capabilities

and the functionality they provide. In general, service

ontologies describe inputs, outputs, preconditions, and effects

(IOPE) for a service. In one of the very first algorithms

proposed for SWS discovery, Paolucci, Kawamura, Payne, and

Sycara proposed a logical reasoning-based matching of service

request with service advertisement [10]. The proposed system

extends the UDDI service advertisement to incorporate

semantic information about inputs and outputs of the service.

It then matches all the request outputs with the outputs of

advertisements and all request inputs with inputs of the

advertisements using logic-based matching and assigns a

degree of match as one of the following: Exact, Plugin,

Subsumes, or Fail. Later on Srinivasan, Paolucci, and Sycara

implemented the same algorithm for the services which were

annotated using OWL-S [11]. Both these approaches use

UDDI as the repository of services. The advantage of these

approaches is the fact that UDDI is already well established

service registry and enjoys considerable industry support.

In another approach, the matching service is published as

an external service in UDDI. This provides a more seamless

integration of semantic matching mechanism with UDDI

registry. In this approach, the matching service providers

publish their services in UDDI as normal web services [3].

This architecture eliminates the need of installing matchmaking

infrastructure either on the registry side or on the user side.

This makes the matchmaking process more flexible where user

can choose from multiple matchmaking services developed by

independent vendors instead of just the one hardwired in

UDDI. This approach also allows user and service provider to

use different semantic markup languages, namely OWL-S,

UML, XML, or any other custom format. Meditskos and

Bassiliades have proposed a matchmaker that matches user

request based on similarity between keywords in the request

with keywords in service descriptions [7].

The authors Klusch, Fries, and Sycara have implemented a

hybrid algorithm based on similarity measures in information

retrieval techniques. OWLS-MX is a hybrid matchmaker that

complements the logic-based reasoning with syntactic IR based

similarity comparisons [6]. Authors have shown that under

certain constraints, the logic-only based algorithms for service

I/O matchmaking are outperformed by this hybrid algorithm.

The authors Bellur and Kulkarni have proposed a novel method

of SWS discovery. The method considers matching of output

and input concepts of the request and service advertisement. It

constructs a bipartite graph using the concepts of output

concepts from request and advertisement respectively and tries

to find the matching bipartite graph [1] using standard graph

matching algorithms.

There are several preprocessing methods that employ

clustering based approaches to improve efficiency of discovery

mechanisms. Conventional web services published in UDDI

are categorized depending on some standard classification such

as North American Industry Classification System (NAICS),

but service provides may not always publish their services

under the relevant category. As a result, a service published in

an unrelated category might not get selected even though it

provides relevant outputs. To overcome this, Paliwal et al.

have proposed a clustering on top of the existing

categorization. Their solution includes a service categorization

module that first matches the service description to a standard

ontology with the help of WordNet and then clusters web

services into functional categories depending on ontology

concepts [9]. In another clustering-based approach proposed

by Nayak and Lee [8], Jaccard Coefficient method is used to

calculate semantic similarity between service descriptions and

clustering is performed based on this similarity value. The

system proposed by Elgazzar, Hassan, and Martin [4] mines

WSDL documents to extract semantic concepts and then

clusters the services in functionally similar groups.

There are thousands of services already available in the

public domain and with the interest generated by Semantic

Web Services; the number is expected to explode in future.

This will necessitate large and complex repositories. The

existing matchmaking algorithms are considerably

heavyweight mechanisms since the ontologies expressed using

existing SWS frameworks such as OWL-S or WSMO present a

high complexity in defining and processing them. Due to this

reason and with exponentially growing numbers of available

services, the discovery mechanisms will face scalability issues.

The main bottleneck is caused by the reasoning facilities which

need to match hundreds of ontologies in order to fetch relevant

services. Garcia, Ruiz, and Ruiz-Cortes [5] have proposed a

novel solution that aims at alleviating the scalability issue of

discovery mechanisms. It introduces a preprocessing step that

applies a SPARQL-based filtering mechanism to reduce the

search space of the discovery process. Since the input size of

the reasoning facility is reduces, it brings marked improvement

in the performance of the discovery mechanism.

III. IMPLEMENTATION DETAILS

To date, there are very few standard domain ontologies

available covering major domains. Due to this reason,

different service providers developing services for the same

operative domain may refer to different ontologies. This will

result into web services providing similar services but referring

to concepts from different ontologies and introduces semantic

heterogeneity. As a result, the matchmaking services or

repository filter will fail to retrieve some services even if they

are relevant to the request if request and service description

refer to different ontologies. To overcome this problem, the

proposed system introduces an ontology scan module to the

filtering mechanism. It uses a technique based on WordNet to

reduce the semantic heterogeneity and improve recall of the

repository filtering mechanism. WordNet is a publicly

available lexical database in which nouns, verbs, adjectives,

and adverbs are arranged into sets of synonyms.

For example, Listing 1 and 2 show service advertisements

for CarPriceService and AutoCostService respectively. Both

of these services provide price of a car but they refer to

different ontologies. If a user gives a request with concepts as

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)

ISSN : 2394-0905

Issue 6 Volume 2

Paper : 11

Page 3 of 5

Car and Price, then repository filter will not select

AutoCostService as a probable match because of the semantic

heterogeneity introduced by different ontologies. As a result

AutoCostService will not be selected even if it is a relevant

service. The ontology scan module in the proposed system

helps reconcile this heterogeneity by including the concepts in

the user request as well as all the synonyms of all the concepts

in the generated filter. Listing 3 shows the filter generated by

the proposed system. This filter will be able to select both

CarPriceService and AutoCostService.

Listing 1: Service Advertisement for CarPriceService

Listing 2: Service Advertisement for AutoCodstServiceService

Listing 3: Generated SPARQL filter

A. System Overview

Architecture of the proposed system is shown in figure 1.

Fig. 1. Architecture of Proposed System

The system contains following modules.

1. Ontology Scan: This module finds all synonyms for

each concept extracted from user request. After concepts are

extracted from user request, this module iterates over all the

concepts and finds synonyms for each concept with the help of

WordNet database. All the available ontologies are scanned to

find if any of the synonyms of extracted concepts exist in any

of these ontologies. If synonyms of any of the concepts are

present in available ontologies, these are added to the array of

concepts.

2. Filter Generation: All the concepts from user request as

well as any synonyms present in the existing ontologies are

@prefix profile: <http://www.daml.org/services/owl-s

/1.1/Profile.owl#>.

@prefix process: <http://www.daml.org/services /owl-s

/1.1/Process.owl#>.

@prefix myOntology: <http://des.org/data /ontology /owlstc

/myOntology.owl#>.

:AutoCostServiceProfile a profile :Profile ;

profile:hasInput :Automobile;

profile:hasInput :Make;

profile:hasInput :Model;

profile:hasOutput :Cost.

:Automobile a process :Input ;

process:parameterType myOntology:Automobile.

:Make a process :Input ;

process:parameterType myOntology:Make.

:Model a process :Input ;

process:parameterType myOntology:Model.

:Cost a process :Output ;

process:parameterType myOntology:Cost.

SELECT DISTINCT ? service

WHERE {

?service a service:Service ;

service:presents ?profile .

match all inputs and outputs of the profile...

?profile profile:hasInput ?inputTerms.

?profile profile:hasOutput ?outputTerms.

{?inputTerms process:parameterType travel:Car}

UNION

{?inputTerms process:parameterType myOntology:Automobile

}

UNION

{?inputTerms process:parameterType myOntology:Make}

UNION

{?inputTerms process:parameterType myOntology:Model }

UNION

{?outputTerms process:parameterType travel:Hotel }

UNION

{?outputTerms process:parameterType travel:Hotel }

}

@prefix profile: <http://www.daml.org/services/owl-s

/1.1/Profile.owl#>.

@prefix process: <http://www.daml.org/services /owl-s

/1.1/Process.owl#>.

@prefix portal: <http://purl.org/iserve /ontology /owlstc

/portal.owl#>.

@prefix travel: <http://purl .org/iserve /ontology

/owlstc/travel.owl#>.

:CarPriceServiceProfile a profile :Profile ;

profile:hasInput :Car;

profile:hasOutput :Price.

:Car a process :Input ;

process:parameterType travel:Car.

:Price a process :Output ;

process:parameterType travel:Price.

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)

ISSN : 2394-0905

Issue 6 Volume 2

Paper : 11

Page 4 of 5

used to the generate SPARQL query which is used as filter.

This enables selection of services which refer to same concepts

but from different ontologies. This improves recall of the

filtering mechanism.

3. Filter Execution: The generated SPARQL query is

executed against all the registered service advertisements

present in service repository. This filter selects only those

advertisements that contain one or more concepts from user

request or their synonyms rejecting rest of the advertisements.

Only the service advertisements selected by the filter are sent

to subsequent matchmaker service.

B. Mathematical Model

Let S = {O, A, R, Q} be the system where

O = O1 U O2 U ……. U On is the set of domain ontologies.

A = A1 U A2 U ……. U Am is the service advertisements

registered in service repository.

R = R1 U R2 U …….. U Rx is the set of user requests.

Each services advertisement Ai contains several input

and output terms defining capabilities of the service. Let

ACi represent collection of input and output terms of

advertisement Ai.

ACi = {CAi1, CAi2, ….., CAin}

Each user request Ri also contain several input and

output concepts. Let RCi represent collection of concepts in

request Ri.

RCi = {CRi1, CRi2, ….., CRim}

Ontology scan mechanism tries to find all available

synonyms for each concept in the request such that

RC’i = {CRi1, SC11, SC12, …, SC1m, CRi2, SC21, SC22, …, SC2m,

….., CRim, SCn1, SCn2, …, SCnm, } where SCi1, SCi2, …, SCim are

synonyms of concept Ci1.

Filter generator module generates a SPARQL query Q

based on all concepts from RC’i that includes original

concepts from user request Ri as well as all the synonyms.

Filter execution module executes the generated query

Q against the service advertisements A present in the

repository. It selects only those advertisements that contain

one or more concepts from RC’i and filter out rest of the

advertisements. It can be represented as

F = {Ai| ACi ∩ RC’i ≠ ᴓ }

C. Algorithms

Algorithm 1 is the algorithm of the proposed system.



Algorithm 1: Algorithm of the proposed system

IV. RESULTS

A. Data Sets

The experimental evaluation of the proposed system uses a

dataset called as OWLS-TC V3. It is a widely used test

collection of service advertisements and service requests. This

collection contains 1007 service descriptions from seven

different domains such as education, medical care, food, travel,

communication, economy, weapons. The advertisements are

service profiles created using OWL-S framework. It also

contains 29 user requests that can be matched against the

service description. The collection also lists relevant services

against each request so that the performance of the matchmaker

can be evaluated against it. It is available at

SemWebCentral.org. Evaluation is performed on a system

having 1.71 GHz CPU, 4GB RAM, Windows 7 SP1 Operating

system and with Java 7.

B. Result Set

Experiments have shown that with the introduction of

ontology scan module, recall of the repository filter is

improved by 7% to 35%. Experiments were conducted for all

the requested included in the test collection. Results for few of

the requests have shown below.

V. CONCLUSION

Web Services are self-contained, self-describing

components that publish a well-defined interface. It allows

programmers to build complex applications by using Web

Services as building blocks. Conventional keyword-based

search mechanism fails to discover most relevant services.

Thus, they fail in achieving their main design goal, namely

automatic discovery and composition of services. Semantic

annotations provide a way to express capabilities of Web

Services in a machine readable format, thus allowing the

services to be discovered automatically. There are various

approaches being used for semantic matchmaking. These

existing mechanisms are computation intensive and face

scalability issues when number of published services or

1) Accept user request.

2) Concepts = Extract input and output concepts from user

request.

3) Find synonyms of each concept in Concepts.

For each c of Concepts do

synonyms = findSynonyms(c)

Concepts = Concepts + synonyms

End for

4) Filter = Generate SPARQL query based on all the concepts

in Concepts.

5) Execute Filter against all advertisements in service

repository.

6) Pass service advertisements selected by the filter to

matchmaking engine.

Spvryan’s International Journal of Engineering Sciences & Technology (SEST)

ISSN : 2394-0905

Issue 6 Volume 2

Paper : 11

Page 5 of 5

complexity of ontology increases. Repository filtering

approach aims at overcoming this scalability problem by

reducing the size of the search space for the matchmaking

algorithm and considerably improves response time. The

proposed system improves performance of the repository

filtering mechanism by introducing an ontology scan module

that includes request concepts as well as all its synonyms to the

generated filter so that it will be able to select services even if

they are not referring to the common ontology.

ACKNOWLEDGMENT

It gives me immense pleasure to present this paper. I wish

to thank all the people who gave me an unending support

directly or indirectly. I express my sincere and profound

thanks to our teachers \textbf{Mrs. M. A. Potey} (Head of

Department), \textbf{Ms. S. S. Pawar} (PG Co-ordinator). It

would not have been possible to complete the work without

their kind support and help. I want to extend my special

thanks to \textbf{Mrs. D. A. Phalke} (Project Guide) for her

guidance and constant supervision. I am also thankful to all

my classmates who have helped me in the preparation of this

seminar and I would also like to thank our college, D. Y. Patil

College of Engineering, Akurdi and the Computer Department

for providing all the necessary resources.

REFERENCES

[1] Bellur, U. a. (2007). Improved matchmaking algorithm for

semantic web services based on bipartite graph matching. IEEE

International Conference on Web Services, ICWS. (pp. 86--93).

IEEE.

[2] Cardoso, J. (2007). Semantic Web Services: Theory, Tools and

Applications. IGI Global.

[3] Colgrave, J. a. (2004). External matching in UDDI. IEEE

International Conference on Web Services. Proceedings. (pp.

226--233). IEEE.

[4] Elgazzar, K. a. (2010). Clustering wsdl documents to bootstrap

the discovery of web services. IEEE International Conference

on Web Services (ICWS) (pp. 147--154). IEEE.

[5] Garcia, J. M.-C. (2012). Improving semantic web services

discovery using SPARQL-based repository filtering. Web

Semantics: Science, Services and Agents on the World Wide

Web, Elsevier.

[6] Klusch, M. a. (2006). Automated semantic web service

discovery with OWLS-MX. Proceedings of the fifth

international joint conference on Autonomous agents and

multiagent systems, 915--922.

[7] Meditskos, G. a. (2010). Structural and role-oriented web

service discovery with taxonomies in OWL-S. IEEE

Transactions on Knowledge and Data Engineering, 278--290.

[8] Nayak, R. a. (2007). Web service discovery with additional

semantics and clustering. IEEE/WIC/ACM International

Conference on Web Intelligence (pp. 555--558). IEEE.

[9] Paliwal, A. V. (2012). Semantics-based automated service

discovery. IEEE Transactions on Services Computing, 260--275.

[10] Paolucci, M. a. (2002). Importing the Semantic Web in UDDI.

Springer, 225--236.

[11] Srinivasan, N. a. (2005). An efficient algorithm for OWL-S

based semantic search in UDDI. Springer, 96--110.

[12] Staab, S. a. (2009). Handbook on ontologies. Springer.

