Content Based Video Retrieval Using Integrated Feature Extraction

Mr. Pradeep Chivadshetti 1,
Student,
Department of IT, Sinhgad College of Engineering, Pune, Maharashtra, India
pradeepchivadshetti@gmail.com

Mr. Kishor Sadafale 2
Assistant Professor,
Department of IT, Sinhgad College of Engineering, Pune, Maharashtra, India
kbsadafale.scoe@sinhgad.edu

Mrs. Kalpana Thakare
Associate Professor,
Department of IT, Sinhgad College of Engineering, Pune, Maharashtra, India
ksthakare.scoe@sinhgad.edu

Abstract: Traditional video retrieval methods fail to meet technical challenges due to large and rapid growth of multimedia data, demanding effective retrieval systems. In the last decade Content Based Video Retrieval (CBVR) has become more and more popular. The amount of lecture video data on the Worldwide Web (WWW) is growing rapidly. Therefore, a more efficient method for video retrieval in WWW or within large lecture video archives is urgently needed. This paper presents an approach for automated video indexing and video search in large video archives. First of all, we apply automatic video segmentation and key-frame detection to extract the frames from video. Subsequently, we extract textual metadata by applying video Optical Character Recognition (OCR) technology on key-frames and Automatic Speech Recognition (ASR) on audio tracks. At next, extract colour features from metadata and image processing. At last, we integrate all the keywords and features which has extracted from above techniques. Finally similarity measure is applied to retrieve the best matching frames and corresponding videos are presented as output. Additionally provide Re-ranking of results as per users interest.

Keywords: CBVR, Feature Extraction, Video Retrieval, Video Parsing, Re-ranking

I. INTRODUCTION

Content based Video Retrieval (CBVR), in the application of video retrieval, is the issue of searching for digital videos in large databases. “Content-based” is the search which analyse the actual content of the video. The term ‘Content’ in this context might refer colour, texture keywords, and audios. Without the ability to examine video content, searches must rely on images provided by the user. Explosive growth of digital content including image, audio and video on internet as well as on desktop has demanded development of new technologies and methods for representation, storage and retrieval of multimedia systems. Rapid development of digital libraries and repositories are attempting to achieve the same. CBVR system works more effectively as these deals with content of video rather than video metadata.

Fig. 1 Various Feature Extraction Methods

A. Video Parsing:

Fig. 2 shows video processing is always executed on frames which are basic block of video. Group of frames captured together is called shot. Few minutes shot may contain hundreds of frames, which makes video large in size. Storing and processing of these individual frames are memory and computational expensive. Also there is a very minute change of content information between the two consecutive frames of same shot. Selection of frames from single shot may be done to identify the key frame or frames which represent complete shot. These key frames are then used for indexing, content processing and representing video shot/video.
B. Video Indexing:
This process is retrieving the information about the frame for indexing in a database. Video indexing is a process of tagging videos and organizing them in an effective manner for fast access and retrieval. Automation of indexing can significantly reduce processing cost while eliminating tedious work. The conventional features used in most of the existing video retrieval systems are the features such as colour, texture, shape, motion, object, face, audio, etc. It is obvious that more the number of features used to represent the data, better the retrieval accuracy. [10]

C. Video Retrieval and Browsing:
Where users can access the database through queries based on text and/or visual examples or browses it through interaction with displays of meaningful icons. Users can also browse the result of query retrieval. It is meaningful that both retrieval and browsing appeal to the user’s visual intuition. [13]

II. RELATED WORK

Despite many research efforts, the existing low-level features are still not powerful enough to represent index frame content. Some features can achieve relatively good performance, but their feature dimensions are usually too high, or the implementation of the algorithm is difficult. Feature extraction is very crucial step in retrieval system to describe the video with minimum number of descriptors [10].

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Issues</th>
<th>Text Search</th>
<th>Video Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>File Format</td>
<td>HTML/HTTP, PDF, DOC</td>
<td>MPEG 1,2,4, MOV, WMV, Real/HTTP, UDP</td>
</tr>
<tr>
<td>2</td>
<td>Summarization</td>
<td>Easy to extract relevant segment</td>
<td>Requires video parsing first</td>
</tr>
<tr>
<td>3</td>
<td>Browsing</td>
<td>Parallel</td>
<td>Serial (Linear Media)</td>
</tr>
</tbody>
</table>

Several content-based video search systems have used different features or techniques for video retrieval as follows:

A. Metadata:
The basic feature extraction was extraction of metadata and textual information of video. Video was retrieved by using that features like title, subtitle, properties (extension, modified date, size, etc.).

B. Colour and Texture:
Proficient detection and segmentation of text characters from the background is necessary to fill the gap between image documents and the input of standard OCR systems [3].

The basic visual features of index frame include colour and texture. Research in content based video retrieval today is a lively disciplined, expanding in breadth. Representative features extracted from index frames are stored in feature database and used for object-based video retrieval. Texture is another important property of index frames. Various texture representations have been investigated in pattern recognition and computer vision. [11]

C. Edge detection, Colour, Shape, Shot boundary etc.:
Explosive growth of digital content including image, audio and video on internet as well as on desktop has demanded development of new technologies and methods for representation, storage and retrieval of multimedia systems. Rapid development of digital libraries and repositories are attempting to achieve the same. Video feature database is created using entropy feature extracted from key video frames of video database. Same feature is extracted from video frame query. [4]

D. ASR (Automatic Speech Recognition):
In addition to video ASR can provide speech-to-text information from different videos, which offers the chance to improve the quality of automatically generated metadata dramatically. However, as mentioned, most video speech recognition systems cannot achieve a sufficient recognition rate. [1]

E. OCR (Optical Character Recognition):
An end-to-end system for text detection and recognition is important in multiple domains such as content based retrieval systems, video event detection, human computer interaction, autonomous robot or vehicle navigation and vehicle license plate recognition. Text detection in natural scenes is a challenging problem and has gained a lot of attention recently. Such texts presents low contrast with background, large variation in font, colour, scale and orientation combined with background clutter.

There have been numerous research efforts on Text Detection and Recognition by using OCR applications. Number of approaches for text detection in images has been proposed into the past. Automatic detection and translation of text in images done using different techniques proposed. These methods aim to detect the characters based on general properties of character pixels. The distribution of edges, colour is used in many text detection methods also for low resolution document are processed by particular method. Text detection and recognition in images and video frames, process is combination of advanced optical character recognition (OCR) and text-based searching technologies.

Unfortunately, text characters contained in images can be any grey-scale value (not always white), variable size, low-resolution and embedded in complex backgrounds. Texture is commonly used feature for text segmentation. Many researchers working on text detection and thresholding algorithm with various approaches achieved good performance depends on some constraints. Therefore,
In this section, the overall comparisons of all the techniques are discussed. Different content based video retrieval techniques are discussed like feature extraction using colour, shape, texture, etc. and keyword extraction using Metadata, OCR and ASR. It is represented in the tabular form below:

TABLE II. COMPARISON BETWEEN DIFFERENT TECHNIQUES FOR VIDEO RETRIEVAL

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Authors</th>
<th>Used Techniques</th>
<th>Work description</th>
<th>Problems found</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kuo, T.C.T. et. al. [1996]</td>
<td>A Content-Based Query Language for Video Databases</td>
<td>Content objects are used to Extract metadata, simple keywords, user can sketch query</td>
<td>Doesn’t provide relevant results, limited retrieving method of video query</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Volkmer, T. et. al. [2006]</td>
<td>Exploring Automatic Query Refinement For Text-Based Video Retrieval</td>
<td>Automatic query filtering, video speech transcripts, improvements of up to 40%.</td>
<td>Not much filtering, video retrieval at the shot or story level</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>B. V. Patel et. al. [2010]</td>
<td>Content Based Video Retrieval using Entropy, Edge Detection, Black and White Colour Features</td>
<td>Extracting Entropy, Edge detection and colour features for feature extraction</td>
<td>Limited feature extraction methods, can include integrating content features like frequency, histogram, etc. with data mining Techniques.</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Latha Y.M. et. al. [2010]</td>
<td>Relevance Feed Back Content Based Image Retrieval Using Multiple Features</td>
<td>Used Corel real-world image databases with 1000 images, divided into 10 categories, each category containing 100 images including landscapes, animals, plants, monuments, transport</td>
<td>Integration of all features is time consuming, multifeature vector without Relevance Feed Back method.</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>Padmakala S. et. al. [2011]</td>
<td>An Effective Content Based Video Retrieval Utilizing Texture, Colour, and Optimal Key frame Features</td>
<td>At first, the input raw video is segmented using video object segmentation algorithm, Then, feature vectors are computed from VSR using the texture analysis and colour moments.</td>
<td>Only extract the keywords from features, low performance of optical key frame presentation</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>Kale, A. et. al. [2013]</td>
<td>Video Retrieval Using Automatically Extracted Audio</td>
<td>Used speech recognition algorithm to extract keywords</td>
<td>Limited to metadata and Audio, different Language may reduce performance</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Hadi Yarmohammadi et. al. [2013]</td>
<td>Content Based Video Retrieval Using Information Theory</td>
<td>Proposed for video retrievals an summarization problem</td>
<td>Doesn’t clustered automatically</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>Arpit Jain et. al. [2014]</td>
<td>Text Detection and Recognition in Natural Scenes and Consumer Videos</td>
<td>Proposed end to end system for text detection in natural images and videos</td>
<td>Extensive evaluation on a large dataset illustrates in both pixel-level text Detection and word recognition tasks.</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Haojin Yang et.al. [2014]</td>
<td>Content Based Lecture Video Retrieval Using Speech and Video Text information</td>
<td>Extracting keywords by OCR, ASR, Features</td>
<td>Integration of all the feature extraction gives better and relevant output result</td>
<td>1</td>
</tr>
</tbody>
</table>
III. PROPOSED SYSTEM

Proposed Content Based Video Retrieval Systems works on five main modules i.e. creation of feature database and retrieval using query feature extraction with similarity measures as shown in figure 3. Firstly, a user uploads or gives a video query as input to the CBVR system. System will divide the frames into video and does selection process of relevant frames into all frames. Simultaneously ASR system will process on video input and extract the keywords by ASR technique. After frame segmentation and selection, perform OCR and image processing on selected frames and extract the keywords and features. The same process of ASR, Frame segmentation, OCR and image processing is done on videos stored on database/cloud. After pre-processing system will search for similarity in keywords and features of query video metadata and all video which are stored in database or cloud. CBVR system extracts the most matching keywords and features and generates relevant results. After ranking checks the user profile history for personalization of the results and provide the re-ranking results to user.

A. Frame Segmentation and Selection Technique

If the video contains structure, i.e. several shots, then the standard techniques for video summarization involve:

1. shot detection, then
2. II. Use the first, mid, or nth frame to represent each shot.

However, let us assume you wish to find an interesting frame in a single continuous stream of frames taken from a single camera source. I.e. a shot.

A mean colour histogram is computed for all frames and the key-frame is that with the closest histogram i.e. system selects the best frame in terms of its colour distribution.

System assumes that camera stillness is an indicator of frame importance. As suggested by
Beds, above. Then pick the still frames using optic-flow and use that.

- Each frame is projected into some high dimensional content space; system find those frames at the corners of the space and use them to represent the video.
- Frames are evaluated for importance using their length and novelty in content space.

B. Optical Character Recognition (OCR)

Optical character recognition (OCR) is an important research area in pattern recognition. The objective of an OCR system is to recognize alphabetic letters, numbers, or other characters, which are in the form of digital images, without any human intervention. This is accomplished by searching a match between the features extracted from the given characters image and the library of image models. Ideally, they would like the features to be distinct for different character images so that the computer can extract the correct model from the library without any confusion. At the same time, the features should be robust enough so that they will not be affected by viewing transformations, noises, resolution variations and other factors. Figure 4 illustrates the basic processes of an OCR system.

C. Automated Speech Recognition (ASR)

In computer science and electrical engineering, Speech Recognition (SR) is the translation of spoken words into text. It is also known as "automatic speech recognition" (ASR), "Computer speech recognition", or just "speech to text" (STT). Some SR systems use "speaker-independent speech recognition" while others use "training" where an individual speaker reads sections of text into the SR system. These systems analyse the person's specific voice and use it to fine-tune the recognition of that person's speech, resulting in more accurate transcription. Systems that do not use training are called "speaker-independent" systems. Systems that use training are called "speaker-dependent" systems. Speech recognition applications include voice user interfaces such as voice dialling (e.g. "Call home"), call routing (e.g. "I would like to make a collect call"), demotic appliance control, search (e.g. find a podcast where particular words were spoken), simple data entry (e.g., entering a credit card number), preparation of structured documents (e.g. a radiology report), speech-to-text processing (e.g., word processors or emails), and aircraft (usually termed Direct Voice Input). The term voice recognition or speaker
identification refers to identifying the speaker, rather than what they are saying. Recognizing the speaker can simplify the task of translating speech in systems that have been trained on a specific person's voice or it can be used to authenticate or verify the identity of a speaker as part of a security process.

IV. CONCLUSION

In this paper, we presented an approach for content-based video retrieval in large video archives. In order to apply visual as well as audio resource of videos for extracting content-based metadata automatically. We propose an end-to-end text detection and recognition system as OCR and also applying ASR. The text detection component uses SVM classifier based on rich shape descriptors such as HOG, Gabor and edge features for improved performance, and leverages PLS technique for dimensionality reduction, leading to SVM speed improvement. We proposed a merging scheme which overcomes the mistakes of SVM classification step and preserves word boundaries. Extensive evaluation on a large dataset illustrates the efficacy of our approach in both pixel-level text detection and word recognition tasks. At last, we integrating all the features extracted by OCR, ASR, Metadata and personalized results to produce efficient and relevant result to users.

ACKNOWLEDGMENT

The authors thank Haojin Yang and Christoph Meinel, Arpit Jain and Pradeep Natarajan. Turnoff their valuable comments and edits in refining ideas for the paper. The research was supported by the information technology department of Sinhgad College of Engineering, Pune.

REFERENCES

[10]. Padmalka, S., Anandha Mala, G.S. and Shalini, M, “An Effective Content Based Video Retrieval Utilizing Texture, Color, and Optimal Key frame Features", in IEEE International Conference on Image Information Processing (IC IPP), DOI: 10.1109/ICCPP.2011.6108864, Page(s): 1 – 6, 2011
[13]. M. Petcovc, Centre for Telematics and Information Technology, University of Twente, “Content-based video retrieval”.